
Non-technical summary

version 2.0
April 14, 2018

URL: perun.network
email: info@perun.network

1 Introduction

Cryptocurrencies such as Bitcoin have gained great pop-
ularity over the last 10 years. The backbone of these cur-
rencies is a technology called the blockchain (or ledger).
Since their introduction in [10], several different cryp-
tocurrencies have been proposed. One particular interest-
ing example is the cryptocurrency Ethereum [12], which
permits its users to create so-called smart contracts. In-
formally speaking these contracts are agreements written
on the ledger and executed by the underlying blockchain
protocol itself (see, e.g., [3] for more).

The “blockchain technology” requires each transac-
tion to be stored on the ledger. This imposes a funda-
mental limit on how many transactions can be processed
per second. This scalability problem is drastically ampli-
fied with the emergence of microtransactions that allow
users to transfer tiny amounts of money, typically less
than 1 cent, and can enable many novel business models,
e.g., fair sharing of WiFi connection, or devices paying
to each other in the “Internet of Things”. Besides the
scalability, there are also several other challenges that
need to be addressed by ledger-based cryptocurrencies
before they can handle massive volumes of microtransac-
tions. First, in many settings microtransactions have to
be executed instantaneously, which is a problem, since
confirmation of transactions in the ledger-based curren-
cies takes some time. Secondly, and more importantly,
posting transactions on the ledger usually costs money.

An exciting proposal to address the above challenges
is a technology called payment channels [4], which al-
lows two users to rapidly exchange money between each
other without sending transactions to the ledger. Exam-
ples of such systems include Lightning and Raiden, where
the payment channels can be linked to create payment

networks. This is done via a mechanism of “routing pay-
ments” over chains of multiple channels using so-called
“hash-locked transactions”. They can also be generalized
to state channels [5, 1], which, informally speaking, are
channels that can serve for executing smart contracts be-
tween the users that established them.

2 Perun: virtual channels over
Ethereum

In this note we informally introduce Perun1, a new sys-
tem for payment and state channels over Ethereum (for a
more complete technical description see Perun’s whitepa-
per [7]). Perun offers a new technique for connecting
channels that has several advantages over the existing
technique of “routing transactions” over multiple chan-
nels. Most importantly, it does not require involvement
of the intermediary for every payment that is performed
between the end users of the channel. This is achieved
by constructing a new primitive called virtual payment
channels over so-called state channels. We explain these
notions below (for the sake of simplicity we ignore sev-
eral practical issues such as, e.g., the transaction fees).
We start with recalling the concept of simple payment
channels (which in Perun are called the “basic payment
channels”).

1 Perun is the god of thunder and lightning in the Slavic
mythology. This choice of name reflects the fact that one
of our main inspirations is the Lightning system. The name
“Perun” also connotes with “peer” (which reflects its peer-
to-peer nature), and “run” (which stresses the fact that the
system is very fast).

URL: perun.network 1 email: info@perun.network



2.1 Ledger channels

A ledger channel between two parties, Alice and Bob,
allows them to keep massive bulk of transactions “off-
chain”. More precisely: the ledger is used only when par-
ties involved in the payment channel disagree, or when
they want to close the channel. As long as the parties
are not in conflict, they can freely update the balance
of the channel (i.e. transfer money between each other’s
accounts).

Because off-chain transactions can always be settled
on a ledger by the users involved, there is no incentive for
the users to disagree, and hence honest behavior will be
strongly preferred by them. In the optimistic case, when
the two parties involved in the payment channel play
honestly, and off-chain transactions never hit the ledger
before the channel is closed, payment channels signifi-
cantly reduce transaction fees, allow for instantaneous
payments and limit the load put on the ledger.

Technically, the channels are implemented using a
smart contract technology (that is used to guarantee that
in case of dispute their channel can always be settled in a
fair way). Below we describe only the functionality that
these channels provide. For the implementation details
see, e.g., [11] or [7].

Ledger payment channels. At a high-level a ledger
payment channel between two parties Alice and Bob starts
with a creation procedure, where Alice puts xA coins into
the channel and Bob commits xB coins respectively. Ini-
tially, the balance of the channel can be described by a
pair (xA, xB), meaning that Alice “has xA coins in it” and
Bob “has xB coins in it” (xA and xB are also respectively
called Alice’s and Bob’s cash in the channel). Pictorially,
creating a channel in which Alice deposits 2 coins and
Bob deposits 3 coins can be represented as follows:

Alice

2 basic channel 3

Bob

2 3

Fig. 1

After this set-up has been completed, Alice and Bob can
update the distribution of funds in the channel without
interacting with the blockchain. For example, if Alice
transfers 1 coin to Bob in the channel from Fig. 1, then,
after the update the balance of this channel will be (1, 4),
which can be depicted as follows:

Alice

1 ledger channel 4

Bob

Fig. 2

The balance of a channel can be updated multiple times,
subject to the invariant that the sum of Alice’s and Bob’s
cash in the channel does not change. At some point one
of the parties that created the channel can decide to close
it. For example, if Alice wants to close out the channel,
she commits the current balance (x′A, x

′
B) of the channel

to the blockchain and the funds are distributed accord-
ingly to Alice and Bob (i.e. Alice and Bob receive x′A and
x′B coins respectively). For instance, if the channel from
Fig. 2 is closed, then Alice and Bob receive 1 and 4 coins,
respectively, which can be depicted as follows.

Alice

1 ledger channel 4

Bob1 4

Fig. 3

Ledger state channels. As mentioned before, a fur-
ther generalization of payment channels are the state
channels, which significantly enrich the functionality of
payment channels. State channels can, besides payments,
execute smart contracts “inside of a channel” in an off-
chain way. Very informally, this is done by letting the
channel’s state contain, in addition to the financial bal-
ance, a string σ that describes the current state of the
contract’s storage (i.e. the values of all the contract’s
variables), and a value x that indicates the amount of
coins “blocked” in the contract. As long as there is no
conflict between the users of the state channel, they can
freely update σ. However, once one of the parties starts
to misbehave, the other one can post the latest version
of σ on the ledger, and the ledger will finish the exe-
cution of the contract (and take care of all its financial
consequences), starting from storage σ. In most of the
cases, the parties will not need to do it, and all the exe-
cution can be handled by simply updating the state σ in
a “peaceful way”.

One way to look at it is that the state channels pro-
vide a way to implement a “virtual 2-party ledger”, in
the following sense: two parties that established a state
channel can maintain a “simulated contract ledger” be-
tween themselves and perform the ledger transactions on

URL: perun.network 2 email: info@perun.network



it without registering them on the real ledger (as the par-
ties do not enter into a conflict). Security of this solution
comes from the fact that at any time any party can pass
the current state of the channel to the real ledger.

In Perun we extend this concept even further, by al-
lowing a state channel to consists of several “indepen-
dent” contract storage states σ1, . . . , σm. The σi’s corre-
spond to contract instances that can be created, updated,
and executed in parallel. Every σi has also an associated
variable xi that describes the amount of coins blocked
in the corresponding contract instance. Each time a new
contract instance is created, Alice and Bob have to block
some of their coins in it. Hence, the sum of Alice’s and
Bob’s cash in the channel can change over the lifetime
of the channel. Such state channels are a crucial building
block for the virtual channels that we we describe below.

2.2 Virtual channels

The main novelty of Perun is a new method for connect-
ing ledger channels that is alternative to “payment rout-
ing” used in existing payment channel networks. Namely,
Perun offers the so-called “virtual channels” that min-
imize the need for interaction with the intermediaries
in the channel chains, and in particular do not require
to route individual payments over them. The construc-
tion of virtual channels is based on the idea of applying
the channel technique recursively, by building a payment
channel “on top of” the state channels. Our observation
is that contracts in a state channel can be used to con-
struct payment channels in a way similar to how smart
contracts on the ledger can be used to build payment
channels over the standard ledger.

There are many details that need to be taken care of
in order for this general idea to work. What is especially
delicate is handling parallelism, i.e., ensuring that several
virtual channels (with overlapping sets of users) can be
opened, updated, and closed simultaneously. This issues
are described in detail in [7]. Below we provide only a
high-level introduction to this topic.

Virtual payment channels of length 2. Consider 3
parties: Alice,Bob and Ingrid, and suppose that there
exist a ledger state channels X and Y between Alice
and Ingrid and between Ingrid and Bob, respectively. Let
(xA, xI) and (yI , yB) be the respective balances of these
channels. The figure below illustrates this situation with
(xA, xI) = (3, 3) and (yI , yB) = (4, 5)

Alice

3 X 3

Ingrid

4 Y 5

Bob

Fig. 4

In Perun, Alice and Bob can establish a payment chan-
nel with the help of Ingrid, but without touching the
ledger. To distinguish such channels from the ledger ones
(that appear on the ledger) we call them “virtual”. In
case of virtual channels, as long as everybody is honest,
Alice and Bob need to interact with Ingrid only when
the channel is created and when it is closed. Each in-
dividual transaction between Alice and Bob that goes
via this channel does not require interacting with Ingrid.
Our scheme is secure against arbitrary corruptions of
Alice, Ingrid, and Bob (in particular: no assumption about
the honesty of the intermediary Ingrid is needed). Picto-
rially, a creation of a virtual channel in which Alice de-
posits 2 coins from channel X and Bob deposits 3 coins
from channel Y can be represented as follows:

Alice

1 virtual channel 2

Bob

2 3

coins from
ledger channel

X

coins from
ledger channel

Y

Fig. 5

In general, let us consider that Alice deposits vA coins
(from channel X) in the virtual channel, and Bob de-
posits vB coins (from channel Y ) in it. At a technical
level, this is handled in the following way: (a) Alice and
Ingrid create a contract instance in channel X in which
Alice blocks vA of her coins, and Ingrid blocks vB of her
coins, and (b) Ingrid and Bob create a contract instance
in channel Y in which Ingrid blocks vA of her coins, and
Bob blocks vB of his coins. As a result, the cash balance
of channel X is now (xA − vA, xI − vB), and the balance
of channel Y is (yI − vA, yI − vB). A creation of virtual
channel from Fig. 5 over virtual channels X and Y from
Fig. 4 is depicted below.

URL: perun.network 3 email: info@perun.network



Alice

1 virtual channel 2

Bob

Ingrid

2
X

1 3
Y

3

Fig. 6

Note that as a result of the virtual channel creation pro-
cedure Ingrid has to block her money in the ledger chan-
nels, which can be viewed as a disadvantage. In Sect. 2.4
below we discuss a solution for this problem.

Once a virtual channel is created, it can be updated
multiple times, exactly in the same way, as the ledger
channel. For example, the balance of a channel from
Fig. 5 can be changed to (2, 1):

Alice

2 virtual channel 1

Bob

Fig. 7

A virtual channel is closed in a similar way as the ledger
channel (in the current technical write-up [7] it is as-
sumed that a virtual channel is closed when some time
called “validity” comes), but in reality the closing con-
ditions can be much more general). The main difference
compared to closing a ledger channel is that the “financial
consequences” of channel closing are visible on the ledger
channels X and Y , and not on the ledger. For example,
closing the virutal channel from Fig. 7 can be illustrated
as follows:

Alice

2 virtual channel 1

Bob2 1

coins back to
ledger channel

X

coins back to
ledger channel

Y

Fig. 8

More concretely, if the last balance of the virtual chan-
nel is (v′A, v

′
B) and the current balances of X and Y

are (x′A, x
′
I), and (y′I , y

′
B) (respectively) then as a re-

sult of channel closing, the balances of X and Y become
(x′A + v′A, x

′
I + v′B), and (y′I + v′A, y

′
I + v′B) (and the con-

tract instance that “handles” the virtual channel in ledger
channels X and Y disappears). For example, the result of
closing the virtual channel from Fig. 7 can be represented
as follows:

Alice

4 X 2

Ingrid

5 Y 4

Bob

Fig. 9

Note that the consequences of creating and closing a
channel are always “neutral” for Ingrid, i.e., if she looses
money in one ledger channel, then she gains the same
amount in the other channel (cf. Figures 4 and 9).

2.3 Longer virtual state channels

One natural question is if one can have virtual channels
that are (a) longer, (b) have states. It turns out that this
is possible, and in fact these two questions are closely
related. More precisely: if one constructs virtual state
channels, then one can apply our idea recursively for an
arbitrary number of times. This is formalized in [6].

2.4 Further extensions

One drawback of the construction outlined above is the
fact that the parties needs to block the coins that are
used for constructing the channel. This might be espe-
cially problematic for the intermediaries (since they have
to block coins even though they are not going to perform
any real payments with them). Of course in reality the
intermediaries will be charging fees for their service, and
hence one answer to this concern is that simply the costs
of having money blocked will ultimately be charged on
the end users of the channel, and will probably not be
high, since they will correspond to the cost of risk-free
credit granted for the time of the duration of the virtual
channel. Another option is to frequently create virtual
channels for payments of relatively small value, instead
of creating one virtual channel of a larger value. Since cre-
ating a virtual channel involves interaction with the in-
termediary, this solution exhibits a trade-off between how
much interaction is needed vs how much money needs to
be blocked (observe that “routing payments” approach is

URL: perun.network 4 email: info@perun.network



an extreme case of this trade-off with lots of interaction,
and little money being blocked). In Sect. 4 we show an
example of an application that uses this approach.

The third option for addressing this problem is to
slightly relax the security guarantees, and to use the no-
tion of a reputation (in a very mild way). Namely, we can
replace the full cheating-resilience by a weaker “cheating-
evidence”. More precisely, the security guarantee in this
case would be: “if an intermediary cheats then you can ei-
ther get your money back, or you can post an evidence of
cheating on the blockchain”. Hence the risk that one gets
cheated by an intermediary that has been functioning
for a long time already is low, and probably acceptable
in practice in case of microtransactions.

Another obvious problem is the need for permanent
online availability by the parties, since they need to con-
stantly monitor the network to see if the other party did
not submit and old version of the channels. Again, this
problem appears also in other payment networks, and
solutions for this exists (e.g. network monitoring can be
outsourced) [11]. We will provide an extension of Perun
that includes such monitoring in subsequent work. An-
other possible extension is adding anonymity to Perun
(in the style of [8]).

3 State of the project

The description of a protocol for state channels and vir-
tual payment channels of length 2 appears in [7]. The pro-
totype academic implementation is being developed on
GitHub https://github.com/PerunEthereum/Perun (at
the time of writing this text, this site contains the con-
tract code, and part of the code for the user algorithms).
A paper extending the formal description of Perun to
cover longer virtual state channels appeared as [6].

The updates about the project are posted on the
perun.network webpage.

4 Possible applications

In this section we briefly describe possible applications
of Perun.

4.1 Selling microservices

Perun can be used, e.g., when two parties that do not
have any trust relationship between each other want to
do perform an electronic transaction. This occurs, for
example, in applications like file-sharing and distribu-
ted storage (think of “BitTorrent with financial incentives
to share data”), or incentive-driven data routing in net-
works. In such scenarios fair exchange (i.e. deciding what

should happen first: the payment or the service delivery)
is problematic.

More concretely, consider a situation when a Buyer
pays to a Seller for delivering a service that in total is
worth 1 coin, but the Buyer is not willing to pay up-
front the whole sum (since he does not trust the Seller),
and vice-versa: the Seller does not want to deliver the
service without being payed first (for the same reason).
The parties therefore break the transaction into 100 mi-
croservices, and each of them is sold for a micropayment
of 0.01 coins. For example, a microservice can be a packet
of data delivered wirelessly from the Internet, or a small
chunk of data in BitTorrent. The parties expect that, if
the everything goes ok, then in total 100 of microservices
will be performed.

Suppose the Buyer and the Seller have ledger chan-
nels with an intermediary called “Payment Hub”. The
“payments routing” approach puts some inherent limita-
tions on the “size” of each microservice, as each payment
requires interaction with the Hub, which introduces de-
lays and puts heavy communication load on it. By using
Perun, the Hub is involved in the communication be-
tween the Seller and the Buyer in a much more limited
way.

Typically, since the parties will not want to block
too large amounts of coins in the ledger channels for the
virtual channel creation (see discussion in Sect. 2.4), this
will be done by sequentially creating several virtual chan-
nels of a smaller value. More concretely, the virtual chan-
nel will be created for a small deposit, 0.1 coins, say, from
the Buyer (the Seller puts no coins into the channel, since
he will be only receiving payments from it). After each
microservice delivery, the Buyer will transfer to the Seller
a micropayment (of a value 0.01 coins). If the payment is
not delivered, then the Seller quits the protocol. Hence,
the maximal risk for the Seller’s perspective is that he
will not be payed for a single microservice (and for the
Buyer the protocol execution is risk-free).

The above exchange will be performed 10 times, af-
ter the channels capacity is reached. Call an execution of
such a sequence of micropayments a “microtransaction”.
A microtransaction for 0.1 coin broken into 10 micro-
transaction (worth 0.01 coin each) is depicted on Fig. 10
below.

The entire interaction between the Seller and the Buy-
er consist of 10 microtransactions executed one after an-
other. This is depicted on Fig. 11.

4.2 Internet of Things

Another natural application of Perun is the Internet of
Things (IoT). Due to the cost pressure to reduce the
power consumption in many situations the IoT devices
will be connected via some short-range communication

URL: perun.network 5 email: info@perun.network



Seller

0.0 0.1

Buyer

0.1

microservice delivered

0.01 0.09

microservice delivered

0.02 0.08

—
tim

e
−→

...

microservice delivered

0.1 0.0

Seller Buyer0.1

Fig. 10

technology (like Bluetooth or NFC), and will minimize
the interaction with remote devices. Hence, routing each
payment via a third party server may not be an option
in such situations. Our technique removes the need for
such interaction.

Another, related scenario where Perun can be applied
is when the payment intermediary cannot be assumed to
be always available. For example imagine payments in
the vehicular ad hoc networks — here the permanent
availability of the internet connections cannot be guar-
anteed (due to conditions like entering a tunnel, or a zone
with no mobile phone network access).

4.3 Fair games

Virtual state channels can also be used to play fair games
(see, e.g., [2, 9]) without interacting with a blockchain.
Note that the use of virtual state channels has an addi-
tional advantage of protecting contract’s privacy (as long
as the participants are honest, contract’s history remains
secret).

Seller

0.0 1.0

Payment Hub

0.0 1.0

Buyer

execution of the protocol from Fig. 10

0.0 0.9 0.0 0.9

0.1 0.9 0.1 0.9

execution of the protocol from Fig. 10

0.1 0.8 0.1 0.8

0.2 0.8 0.2 0.8

—
tim

e
−→

...

Fig. 11

URL: perun.network 6 email: info@perun.network



References

[1] I. Allison. Ethereum’s Vitalik Buterin explains how
state channels address privacy and scalability. https:
//tinyurl.com/n6pggct. 2016.

[2] M. Andrychowicz, S. Dziembowski, D. Malinowski,
and L. Mazurek. “Secure Multiparty Computations
on Bitcoin”. In: 2014 IEEE Symposium on Secu-
rity and Privacy. Berkeley, California, USA: IEEE
Computer Society Press, 2014, pp. 443–458.

[3] Bitcoin Wiki: Contract. https://en.bitcoin.it/
wiki/Contract. 2016.

[4] Bitcoin Wiki: Payment Channels. https://en.
bitcoin.it/wiki/Payment_channels. 2016.

[5] J. Coleman. State Channels. http://www.jeffcoleman.
ca/state-channels/. 2015.

[6] S. Dziembowski, S. Faust, and K. Hostakova. Foun-
dations of State Channel Networks. Cryptology ePrint
Archive, Report 2018/320. https://eprint.iacr.
org/2018/320. 2018.

[7] S. Dziembowski, L. Eckey, S. Faust, and D. Mali-
nowski. PERUN: Virtual Payment Channels over
Cryptographic Currencies. Cryptology ePrint Archive,
Report 2017/635. http : / / eprint . iacr . org /
2017/635. 2017.

[8] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Sca-
furo, and S. Goldberg. TumbleBit: An Untrusted
Bitcoin-Compatible Anonymous Payment Hub. Cryp-
tology ePrint Archive, Report 2016/575. http://
eprint.iacr.org/2016/575. 2016.

[9] R. Kumaresan, T. Moran, and I. Bentov. “How to
Use Bitcoin to Play Decentralized Poker”. In: ACM
CCS 15: 22nd Conference on Computer and Com-
munications Security. Ed. by I. Ray, N. Li, and
C. Kruegel: Denver, CO, USA: ACM Press, 2015,
pp. 195–206.

[10] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic
Cash System. http://bitcoin.org/bitcoin.
pdf. 2009.

[11] J. Poon and T. Dryja. The Bitcoin Lightning Net-
work: Scalable Off-Chain Instant Payments. Draft
version 0.5.9.2, available at https://lightning.
network/lightning-network-paper.pdf. 2016.

[12] G. Wood. Ethereum: A Secure Decentralised Gen-
eralised Transaction Ledger. http : / / gavwood .
com/paper.pdf. 2016.

Changes from previous version of this document

Compared to version 1.0:

– changed the terms “nanopayments”, “nanotransactions”,
and “nanoservices” to “micropayments”, “microtrans-
actions”, and “microservices” (respectively),

– changed the term “nanocontract” to “contract instance”,
– “multistate channels” are now called “state channels”,
– changed the url of the github repository of the con-

tract source code,
– added a citation to [6].


